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This paper describes results of an experimental study on turbulent wake of an elliptic disk set
normal to the main #ow, whose major diameter is 2)0 or 3)0 minor diameters, Reynolds number
being 2)0]104 on the basis of the minor diameter D. Two periodic components of velocity
#uctuations were found in the wake. One is centred around the minor plane, being due to the
alternate shedding of rolled-up, hairpin-like vortices. The other is centred around the major
plane, which is likely to be due to a meandering motion of the wake. The axis switching, which is
a cross-over of half-widths in the major and minor planes plotted against the streamwise
distance, occurred at approximately 4)0D downstream of the disk. The mechanism of the axis
switching is di!erent from that in elliptic jets, and it is proposed that it is due to a di!erence in
the growth rate of the fundamental Fourier modes in the minor and major planes. The structure
of the wake is studied by #ow visualization and a survey of the time-mean velocity, turbulence
intensities and Reynolds shear stresses. Wavelet analysis of the velocity #uctuations disclosed
a low-frequency unsteadiness in the wake. This unsteadiness has di!erent representative
frequencies in the major and minor planes, being approximately one-"fth of the frequency of the
corresponding periodic component in both planes. ( 1999 Academic Press
1. INTRODUCTION

WAKES OF THREE-DIMENSIONAL blu! bodies have been studied mostly for axisymmetric one
such as spheres and circular disks. In the wakes of these axisymmetric bodies, there are three
modes of instability (Berger et al. 1990). The "rst is the shear layer instability, which is
the Kelvin-Helmholtz instability of the shear layer near the separation edge. The second is
the pumping mode which is manifested as an axisymmetric oscillation of the recirculation
zone behind the body. The third, which is the major mode of instability, is a helical mode,
generating a helical vortex structure in the wake. Monkewitz (1988) argues that the
frequency of periodic velocity #uctuations in the wake of a sphere is associated with
the helical mode of instability in the axisymmetric steady near wake. His analysis yields the
frequency of the most unstable mode which is consistent with the experimentally observed
vortex-shedding frequency.

The helical structures in the wake of a sphere are experimentally demonstrated by
Taneda (1978) and Cannon et al. (1993). Hairpin-like vortices are also found in the wake of
a sphere (Achenbach 1974; Sakamoto & Haniu 1990; Shirayama 1992). The shear layer
instability is manifested as the higher branch of bifurcation of Strouhal number plotted
against Reynolds number (Kim & Durbin 1988; Sakamoto and Haniu 1990). The lower
branch corresponds to the frequencies of the helical or axisymmetric mode.

Statistical properties of the time-mean and #uctuating velocities and pressures in
the wake of axisymmetric bodies are obtained by a number of investigators (Hwang
& Baldwin 1966; Chavrey 1968; Uberoi & Freymuth 1970; Fuchs et al. 1979; Wu and Faeth
1993).
0889}9746/99/101041#27 $30.00 ( 1999 Academic Press
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There are a number of asymmetric bodies in engineering applications. A typical example
is the side-view mirrors of cars. The wake of the mirrors passes along the side windows of
the cars, producing pressure #uctuations on the windows which may cause noise in the
cabin. Thus, it is crucial to clarify the structure of vortices in the wake and the frequency of
vortex shedding, if any. Trains and cars are other examples. In cold regions, vortices in the
wake of cars #ing up snow particles; the snow attached onto the rear side of the cars
prevents visibility of winkers and brake indicators. The capony of asymmetric parachutes
(Peterson et al. 1996) can also be mentioned. However, the structure of turbulent wakes of
asymmetric bodies is not clari"ed yet, at least to the same extent as that of the axisymmetric
wakes.

The purpose of the present paper is to study the turbulent wake of an elliptic disk which is
set normal to the approaching #ow. The elliptic disk is chosen as a simple shape of
asymmetric blu! bodies. This has two length scales and smooth variation of curvature
along the edge. The latter is not the case for a rectangular plate, which is another simple
shape of an asymmetric body.

Apart from engineering applications, the turbulent wake of the elliptic disk deserves
study in its own right, because the wake may have novel properties which could not be
expected from those of axisymmetric wakes. A few issues of interest are as follows. Is there
any periodic vortex shedding from the disk? If any, what is the typical frequency or
frequencies? Is there any axis-switching in the wake as in an elliptic jet? If any, is the
mechanism the same as that for the elliptic jet? These issues will be resolved in this paper.
Moreover, a survey of the time-mean velocities, turbulence intensities and Reynolds shear
stresses are made to clarify the turbulence structure in the wake.

2. EXPERIMENTAL APPARATUS AND METHODS

The #ow con"guration and de"nition of main symbols are shown in Figure 1. The x-axis is
taken in the longitudinal direction, the y-axis along the major axis, and the z-axis along the
minor axis. The origin is at the centre of the front face of the disk. The time-mean and
Figure 1. Elliptic disk, coordinate system, major and minor planes and velocity components.
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#uctuating velocity components in the x, y and z directions are denoted by;,<,= and u, v,
w, respectively. The r.m.s. value of u, v and w will be denoted by u@, v@ and w@. The (x, y) plane
will be referred to as the major plane, while the (x, z) plane as the minor plane. Moreover,
variables of #ow in the major and minor planes will be denoted by the su$x M and m,
respectively.

Experiments were performed in a through-#ow wind tunnel with a 30)0 cm wide, 30)0 cm
high and 100)0 cm long working section. The #ow is introduced into the working section
through a bell entrance of 1 : 9 contraction. A "lter of glass wool is attached to the inlet of
the calming (settling) chamber in which two stages of gauze screens are installed. The free-
stream turbulence level is 0)5% at a main-#ow velocity;

=
of 15)0 m/s, which is employed in

the present study. The velocity ; is uniform within $0)5% of ;
=

in the cross-section at
0)30 m downstream of the inlet of the working section, except for the boundary layers on the
tunnel walls. The thickness of the boundary layer at this section, which is turbulent, is
approximately 3 cm.

Two elliptic disks of the minor diameter D of 20)0 mm were manufactured by machining
from a brass plate of 3)0 mm in thickness. One has the major diameter ¸ of 40)0 mm and the
other has ¸"60)0 mm. The disks will be referred to by the aspect ratio AR ("¸/D), which
is 2)0 for the former and 3)0 for the latter. The edge of the disks are bevelled towards the
downstream side by the angle of 45)03.

The elliptic disk was "xed at 0)30 m downstream of the inlet in the middle of the working
section by three steel wires of 0)2 mm diameter, as shown in Figure 2. The wires are thin
enough for their e!ects on the wake to be neglected. Moreover, the blockage ratio of the
disks is 0)70}1)0%, so that their e!ects on the wake can also be neglected. No sensible
oscillation of the disks was observed during the experiment at the main-#ow velocity
;
=
"15)0 m/s.
Measurements of the velocity components were made by constant-temperature hot-wire

anemometers using an I-wire probe, an X-wire probe, and a split-"lm probe (TSI Model
Figure 2. Support of elliptic disk by three thin wires.
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1287) which can detect an instantaneous #ow reversal. The I- and X-wire probes were
tungsten wires of 5 lm diameter with a working length of 1)0 mm. The X-wires were inclined
by $453with respect to the longitudinal direction. Measurements by these hot-wire probes
were made only in a region where intermittent reverse #ow is negligible. In the region of
intermittent reverse #ow, the velocity components ; and u were detected by the split-"lm
probe (of 132 lm diameter) with the plane of split normal to the longitudinal direction. The
instantaneous velocity components were digitized with a time interval of 0)5 ms over 5 s to
obtain the time-mean and #uctuating components, while the digitization was made at
a shorter interval of 0)1 ms over the time of 1)024 s to obtain the power and cross-spectra.
The spectra were calculated by a FFT analyzer. Most of the velocity measurements were
made in the major and minor planes.

Hot-wire measurements are likely to be reliable only if the ratio u@/;, say, is less than
approximately 0)3, while, if the relative intensity exceeds 0)5, hot-wire results are likely to be
highly unreliable (Chandrsuda & Bradshaw 1981). In this study, no corrections were made
for the e!ects of high turbulence intensities on the time-mean and #uctuating velocities, thus
results within the band 0)3(u@/;(0)5 should be taken with reserve. Measurements of
; and u@ in the major and minor planes at x/D"2)0 and 8)0 by the two types of hot-wire
probes and the split-"lm probe revealed that the mean deviation among measured values
was within $0)05;

=
and $0)02;

=
, respectively, in a region where the reverse-#ow time

fraction I
r
was less than 0)2 (Figure 3). Moreover, the repeatability of the normal velocity

components < and = measured by the X-probe was within $0)03;
=

, while that of the
#uctuating components v@ and w@ was $0)004;

=
. The repeatability of the measured

Reynolds shear stresses !uv and !uw was $0)002;2
=
.

The experiments were made at Reynolds number Re (";
=
D/l, l is the kinematic

viscosity) of 2)0]104. Flow visualization was also made in a water channel at a lower
Reynolds number Re"200 to help the interpretation of results of the wind-tunnel experi-
ment. Fluorescent dye was introduced upstream of the disk through a hypodermic needle to
impinge onto the stagnation point on the front face. The dye travelled along the front face
and eventually entered into the wake from the edge of the disk.
Figure 3. Distributions of (a) time-mean velocity ; and (b) #uctuating component u@ measured by di!erent
probes in the major plane at x/D"2)0.n, split-"lm probe; s, I-wire probe; ], X-wire probe; K, reverse-#ow time

fraction I
r
measured by split-"lm probe.
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3. RESULTS

3.1. FLOW VISUALIZATION

Results of the #ow visualization are shown in Figure 4 for the disk of AR"3)0. The #ow
pattern in the minor plane in Figure 4(b) shows the alternate shedding of large-scale
vortices. These vortices are the hairpin-like vortices in the major plane [Figure 4(a)].
Although the hairpin-like vortices seem to be symmetric, the #ow pattern in the major plane
is not symmetric but seems to indicate a meandering motion. The above features of the #ow
pattern are basically the same for the disk of AR"2)0.

One might expect that an elliptic vortex ring is shed from the edge, generating the
hairpin-like vortices by the self-induced deformation and interaction between neighbouring
vortex rings as in the case of the elliptic jets (Ho & Gutmark 1987; Hussain & Husain 1989).
If this interpretation is correct, the deformed vortex ring should have two planes of
symmetry, as shown in "gure 26 in Hussain & Husain (1989). The hairpin-like vortices in
the wake have no such symmetry. This strongly suggests that the formation of the
hairpin-like vortices and their alternate shedding have nothing to do with the self-induced
deformation of the elliptic vortex rings but are associated with instability of #ow in the near
wake.

3.2. VORTEX SHEDDING

The shedding of the hairpin-like vortices in Figure 4 is periodic. This is demonstrated by
those power spectra of longitudinal velocity #uctuations E

u
( f ), f being the frequency, which

are shown in Figure 5. The spectrum of u in the outer part of the wake in the minor plane
has a sharp peak at a frequency of 80 Hz for the disk of AR"3)0 [Figure 5(b)]; this
frequency will be denoted by F

m
. It is surprising that the spectrum of u in the major plane

also has a sharp peak at a lower frequency of 45 Hz; this frequency will be denoted by F
M
. In
Figure 5. Power spectra of longitudinal velocity #uctuation E
u
( f ) at x/D"4)0 for (a) AR"2)0: top curve at

(y/D, z/D)"(0)0, 2)0) in minor plane; middle curve at (y/D, z/D)" (2)0, 0)0) in major plane; bottom curve at (y/D,
z/D)"(1)5, 1)5), and (b) AR"3)0: top curve at (y/D, z/D)"(0)0, 2)5) in minor plane; middle curve at (y/D,

z/D)"(2)5, 0)0) in major plane; bottom curve at (y/D, z/D)"(2)0, 2)0). Vertical scale is arbitrary linear.
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the middle of the major and minor planes, the spectrum has two peaks at the frequencies
F
m

and F
M

. Both spectrum peaks were detected as far as x/D"20. The spectrum peaks are
also found for the disk of AR"2)0, as shown in Figure 5(a). In this case, the peak
frequencies are F

m
"90 Hz and F

M
"60 Hz. The peak frequencies are plotted in Figure

6 against AR in the form of Strouhal number St
i
"F

i
D/;

=
, where the su$x i implies M or

m. One might expect that St
m

is the same for both disks. However, this is not the case, as
shown by the solid lines in Figure 6. The solid lines are drawn taking the extended branch of
St

i
into account. The data were extended to AR(1)0 in the following way. Assume that D is

"xed while ¸ is changed from a value greater than D (AR'1) to another value less than
D (AR(1). The frequencies F

M
and F

m
should be interpreted as the peak frequencies
Figure 7. Strouhal numbers of rectangular plates as function of aspect ratio AR. o, St
m
; n , St

M
. For meaning of

solid lines, see caption of Figure 6.

Figure 6. Strouhal numbers of elliptic disks as function of aspect ratio AR. o, St
m
; n , St

M
. Solid lines are drawn

taking into account the extended branch in AR(1. See text for procedure of the extension.
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measured in the (x, y) and (x, z) planes, respectively (Figure 1). Thus, for a value of
AR"a(1, St

M
is equal to St

m
for AR "1/a times a, while St

m
is equal to St

M
for

AR"1/a times a.
One might also expect that F

M
normalized in the form F

M
¸/;

=
is the same for both disks,

being equal to St
m
. However, this again is not the case, as can easily be con"rmed from the

data in Figure 5. Thus, a universal Strouhal number cannot be constructed by merely
adjusting the geometrical length scales.

For the purpose of reference, measurements of the power spectrum were made for thin
rectangular plates normal to the main #ow in the same wind tunnel. The spectra in the
minor and major planes were found to have a sharp peak at di!erent frequencies. These
frequencies in the form of St

m
and St

M
are shown in Figure 7 as a function of AR, in which

D and ¸ are the length of the shorter and longer sides, respectively. The Strouhal numbers
have the same trend of change and approximately the same value as those for the elliptic
disks. This suggests that the mechanism of generation of the periodic components is the
same for both the elliptic and rectangular disks. In passing it is worth noting that St

m
was

found to tend to the value of the two-dimensional normal plate approximately at
AR"40)0.

The vortices shed alternately in the minor plane [Figure 4(b)] were con"rmed to generate
the periodic component F

m
. On the other hand, the #ow visualization in the major plane

[Figure 4(a)] shows no de"nite vortical structures responsible for the component F
M

. This
might be due to the di!erence in Reynolds numbers in the #ow visualization (Re"200) and
the wind-tunnel experiment (Re"20000), that is, this structure might become evident at
su$ciently high Reynolds numbers. It is also possible that the component F

M
is due to

a meandering motion of the wake in the major plane. For convenience of description,
however, the structure responsible for F

M
will hereinafter be referred to as vortices. This

structure will be discussed later in Section 4.
Strouhal numbers St

M
and St

m
have distributions in (y, z) cross-sections such as shown in

Figure 8. In the vicinity of the disk x/D"2)0, St
m

is observed in a region centred around the
minor plane, while St

M
appears in a region centred around the major plane. More

downstream, the region of St
M

shrinks, while the region of St
m

enlarges. Thus the hairpin-
like vortices in the minor plane appear to be the dominant structure in the near wake. The
same features are also observed in the wake of the rectangular plates, as shown in Figure 9.

3.3. PHASE RELATION, WAVELENGTH AND INTEGRAL LENGTH SCALE

The coherence coh2( f ) and phase U( f ) of u at positions of maximum u@ are presented in
Figure 10 to obtain the phase relation of the periodic components on both sides of the wake.
The phase is 1803 in the major plane and !1803 in the minor plane at the frequency F

m
and

F
M
, respectively, where the coherence attains a maximum. Thus, the structures which are

responsible for the periodic components are shed alternately on either side of the wake in
each plane. This is consistent with the shedding of the hairpin-like vortices in minor plane
[Figure 4(b)].

The phase velocity of u was obtained in terms of the cross-correlation of u at two points
separated by a distance Dx"0)37D in the streamwise direction. The time lag q at which the
correlation attains a maximum yields the phase velocity ;

c
"Dx/q at the position

x#Dx/2, where x is the position of the upstream probe. The phase velocity can be
interpreted as the velocity of convection of rolling-up vortices. The result is shown in
Figure 11. The phase velocity in the minor plane;

cm
decreases with increasing x to a value

of approximately 0)75;
=

at x/D+5. On the other hand, the phase velocity in the major
plane;

cM
approaches to this value from below at the same x/D. This suggests that the end



Figure 8. Distribution of St
M

and St
m

in cross-sections normal to main-#ow direction for elliptic disk of
AR"2)0. ], St

M
; o, St

m
. In (a), x/D"2)0; (b), x/D"4)0; (c), x/D"6)0.

Figure 9. Distribution of St
M

and St
m

in cross-sections normal to main-#ow direction for rectangular plate of
AR"2)0. ], St

M
; o, St

m
. In (a), x/D"2)0; (b), x/D"4)0; (c), x/D"6)0.
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of the vortex formation region is at x/D+5)0, downstream of which the phase velocities
should slowly increase with increasing x by the decay of the shed vortices.

The wavelength of the velocity #uctuation j, which can be interpreted as the distance
between two consecutive vortices, is obtained as the phase velocity ;

c
divided by the peak

frequency F. The wavelength in the region x/D"5&6 is approximately j
m
"6)3D in the

minor plane and j
M
"9)4D ("4)7¸) in the major plane for AR"2)0, while it is j

m
"6)8D

and j
M
"12)5D ("4)2¸) for AR"3)0. This suggests that the wavelengths j

M
and j

m
approximately scale to the major and minor diameters. The wavelength j

m
is approximately

the same as the distance between consecutive hairpin-like vortices in the #ow visualization
[Figure 4(a)]. On the other hand, the longitudinal length scale of the vortices was 0)6}0)9D
in the region x/D"5&6. This was the same in the minor and major planes for AR"2)0
and 3)0. It may be noted that the length scale was de"ned as the integral time scale (which
was obtained from the autocorrelation coe$cient of u at positions of maximum u@)
multiplied by the phase velocity.

3.4 FLOW FIELDS

3.4.1. Overview and time-mean velocities

Distributions of the time-mean velocity ;, turbulence intensity u@ and reverse-#ow time
fraction I

r
in the major and minor planes (Figure 12) yield an overview of the #ow "eld for

AR"3)0. These were measured by the split-"lm probe. I
r
is zero at x/D"4)2; a plot of I

r
on



Figure 10. Coherence coh2( f ) and phase U( f ) of longitudinal velocity #uctuations at positions of maximum u@ at
x/D"2)0 in (a) major plane and (b) minor plane for AR"2)0. Vertical scale for coherence is arbitrary and linear.

Figure 11. Phase velocity of longitudinal velocity #uctuations at positions of maximum u@. n , ;
cM

(AR"2)0);
£ , ;

cM
(AR"2)0); K, ;

cM
(AR"3)0); e, ;

cm
(AR"3)0). Solid lines for visual aid only.
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Figure 12. Distributions of ;, u@ and I
r
measured by split-"lm probe in (a) major plane and (b) minor plane for
AR"3)0: o, ;; n , u@; K, I

r
.
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the wake axis against x (not shown) showed that the end of the recirculating region is
approximately at x/D"5)0. This was the same for AR"2)0. The edge of the wake remains
approximately at the same position in the major plane (y/D"2)0), while it moves quickly
outwards in the minor plane. Moreover, the level of turbulence intensity u@ is higher in the
minor plane than in the major plane. A maximum of u@ appears in a region where I

r
is zero,

so that its value can reliably measured by the I-wire and the X-wire probes.
Detailed distributions of the time-mean velocities in both planes are shown in Figure 13,

where values of < and= only in regions of I
r
(0)2 are included for the reason mentioned

in Section 2. Note that the distributions of ; are symmetric and those of < and = are
antisymmetric on both sides of the centre of the wake. In the near wake x/D(4)0,;,< and
= have much complicated distributions due to rapid change in #ow direction in the
recirculating region.

It is noteworthy that the velocity component = in the minor plane is positive in the
region x/D'6)0 for z'0 (Figure 13). This does not mean that, in the minor plane, the #uid
is entrained out of the wake into the main #ow. The positive= can be interpreted in terms
of the equation of continuity in the minor plane, i.e. L;/Lx#(L</Ly)

y/0
#L=/Lz"0. The

term (L</Ly)
y/0

is likely to be almost negative in the region x/D'6 as seen in Figure 13,
being a function of x and z. Integrating the equation of continuity with respect to z from 0 to
an arbitrary positive z, one obtains

=(x, z)"!

L
LxP

z

0

;(x, f) df!P
z

0
A
L<
LyB

y/0

df, (1)

since=(x, 0)"0. The integral in the "rst term is an increasing function of x in the region
x/D'6, so that the "rst term is negative. On the other hand, the second term is positive in
the same region, which overcomes the "rst term to make=(x, z) positive. Thus, the positive
= is brought about by the &&squeezing'' in the y-direction.

The velocity component< in the major plane is negative in the same region of x/D'6)0
for y'0 (Figure 13); this is the case in the far wake of axisymmetric bodies like a sphere or
a circular disk. The equation of continuity in the major plane yields<(x, y) of a form similar
to equation (1), but the corresponding two terms are likely to be all negative. Thus, the
negative < is partly caused by the entrainment of the main-#ow #uid into the wake and
partly by the &&negative'' squeezing in the z-direction.

As would be expected, the width of the wake is greater in the major plane than in the
minor plane in the near wake x/D(4)0. This situation is reversed in a more downstream
region x/D'5)0. In order to clarify this point, the half-widths b

M
and b

m
are de"ned in the

major and minor planes as the distance between positions where the velocity defect is equal
to a half of that at the centre. The half-widths are plotted against x in Figure 14. The
cross-over of b

M
and b

m
occurs approximately at x/D"3)8 for AR"2)0 and x/D"4)2 for

AR"3)0. This feature will be referred to as the axis switching. The axis switching is
visualized as the rapid outward motion of the hairpin-like vortices in the minor plane and at
the same time as the shrinkage of these vortices in the y-direction by longitudinal stretching,
as shown in Figure 4.

A similar axis switching has been observed in elliptic jets (Ho & Gutmark 1987; Hussain
& Husain 1989). This is interpreted by the self-induced deformation of single elliptic vortex
rings of the same aspect ratio. However, this mechanism is not the case in the elliptic wakes.
This is because the axis switching in elliptic jets has two planes of symmetry [Figure 26 of
Hussain & Husain 1989] while the vortices in the minor plane of the elliptic wakes have
no such symmetry. The axis switching in the elliptic wakes, as will be discussed later in
Section 4, might be interpreted as the higher growth rate of the most ampli"ed mode in the
minor plane than in the major plane.
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The velocity defect D; in the wake is plotted in Figure 15 against the transverse
coordinates normalized in the form y/b

M
and z/b

m
; the velocity defect is normalized by the

velocity defect on the x-axis D;
0
. The velocity defect has approximately similar distribu-

tions in the region x/D"12}20, except for the edges of the wake where experimental
uncertainties in D; are relatively high. The maximum velocity defect appears in the minor
plane.

3.4.2. ¹urbulence intensities and Reynolds shear stresses

Figure 16 shows distributions of the turbulence intensities u@, v@ and w@, and Reynolds
shearing stresses !uv and !uw. Note that !uv is zero in the minor plane while !uv is
zero in the major plane by symmetry. Also note that !uv and !uw are antisymmetric on
both sides of the wake axis. The data are presented in a region where I

r
is less than 0)2 except

for those obtained by the split-"lm probe.
The level of u@ is much higher in the minor plane than in the major plane in the region

x/D(5)0. This is due to the shedding of the hairpin-like vortices in the minor plane
(Figure 4). This is also the reason why the level of !uw in the minor plane is higher than
that !uv in the major plane. The double peak of u@ in the major plane at x/D"1)0 and 2)0
is associated with two in#ection points in the distributions of ; at these x positions. The
maximum of u@, which appears at the position of maximum Dd;/dyD in the major plane and
maximum Dd;/dzD in the minor plane, is higher than v@ and w@ because the turbulence is "rst
Figure 13. Distributions of;,< and= for AR"3)0: o, x/D"1)0; n , x/D"2)0; £, x/D"4)0.;was measured
by split-"lm probe while< and= were measured by X-wire probe.< and= are shown only in regions where I

r
is

less than 0)2. Solid lines for visual aid only.



Figure 13. (Continued) Distributions of ;, < and= for AR"3)0. o, x/D"6)0: n , x/D"8)0; £, x/D"20)0.
; was measured by I-wire probe while < and= were measured by X-wire probe.

Figure 14. Half-width as function of longitudinal distance: n , b
M

(AR"2)0); £, b
m

(AR"2)0); K, b
M

(AR"3)0); e, b
m

(AR"3)0). Solid lines for visual aid only.
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Figure 15. Distribution of velocity defect D; in major plane (on left) and in minor plane (on right): £,
(x/D"12)0, AR"2)0); n , (12)0, 3)0); ], (16)0, 2)0); o, (16)0, 3)0); e, (20)0, 2)0); K, (20)0, 3)0). D;

0
is value of D; on

the x-axis.
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produced on u@ by the action of !uv (d;/dy) in the major plane and !uw (d;/dz) in the
minor plane. u@ is redistributed into v@ and w@ by the pressure}strain interaction.

The distribution of u@ is approximately similar, as shown in Figure 17, if normalized by its
value at the wake axis u@

0
and the half-widths b

M
and b

m
in the same manner as the velocity

defect D;.

3.4.3. Decay of velocity defect and turbulence intensity

The maximum velocity defect D;
.!9

and the maximum turbulence intensity u@
.!9

are
plotted in Figure 18 against x. In the region x/D'14, the decay of D;

.!9
and u@

.!9
seem to

be not inconsistent with the decay law of the axisymmetric far wake x~2@3. This is also true
for the equivalent half-width b

e
"(b

M
b
m
)1@2, which obeys the law x1@3 in the same region (see

Figure 19). The statistical properties in the far wake has been assumed to depend only on
the integral properties of the body such as the drag and lift. Thus, the elliptic wake is
expected to tend to the axisymmetric far wake. However, a large distance x appears to be
needed, in view of the signi"cant di!erence in the pro"les of the time-mean and #uctuating
velocities in the major and minor planes (Figures 13 and 16).

3.4.4. <ortex formation region

The x position where u@ and w@ attain a maximum at the centre of the wake can be
interpreted as the end of formation region for the hairpin-like vortices in the minor plane.
This is because the hairpin-like vortices acquire the maximum circulation there, then being



Figure 16. Distributions of turbulence intensities u@, v@, w@ and Reynolds shear stresses !uv, !uw for AR"3)0:
o, x/D"1)0: n , 2)0; £, 4)0. u@ was measured by split-"lm probe while v@, w@ and Reynolds stresses were measured

by X-wire probe, being shown in regions where I
r
is less than 0)2. Solid lines for visual aid only.

TURBULENT ELLIPTIC WAKES 1055



Figure 16. (Continued) Distributions of turbulence intensities u@, v@, w@ and Reynolds shear stresses !uv,
!uw for AR"3)0. n , x/D"6)0: K, 8)0; e, x/D"20)0. u@ was measured by I-wire probe while v@, w@ and Reynolds

stresses were measured by X-wire probe. Solid lines for visual aid only.
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Figure 17. Distribution of turbulence intensity u@ in major plane (on left) and in minor plane (on right): £,
(x/D"12)0, AR"2)0); n , (12)0, 3)0); ], (16)0, 2)0); o, (16)0, 3)0); e, (20)0, 2)0); K, (20)0, 3)0). u@

0
is the value of u@ on

the x-axis.
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shed downstream with a slow decay of the circulation. The maximum circulation is expected
to generate the highest intensity of u@ and w@ on the centre of the wake. The turbulence
intensities u@ and w@ plotted against x (not shown) revealed that they attain a broad
maximum at a position between x/D"5 and 6; this can also be seen in Figure 15. Thus, the
end of the formation region lies in this region. This is also supported by the fact that the
peak value of an averaged power spectrum at the frequency F

m
(say E

m
) attains a maximum

at x/D"6)0 (Figure 20). The averaged spectrum was obtained by averaging the power
spectra measured at di!erent z positions at a "xed x, thus the peak value being a measure of
amplitude of u2 averaged along the z-direction.

It may be noted that the formation region for vortices in the major plane cannot be
identi"ed on the basis of the turbulence intensities on the wake axis. This is because these
vortices are weaker than the hairpin-like vortices, as indicated by higher u@ in the minor
plane than that in the major plane (Figure 16), so that the level of the turbulence intensities
on the wake axis is determined by the hairpin-like vortices. However, the peak value of the
averaged spectrum at F

M
(say E

M
) yields information on the formation region (Figure 20).

The peak value E
M

attains a peak at x/D"4)0, suggesting that this is the end of the
formation region for the vortices in the major plane.

3.5. LOW-FREQUENCY UNSTEADINESS OF VORTEX SHEDDING

Velocity #uctuations associated with the periodic vortex shedding have low-frequency
amplitude modulation. This has been found in the vortex-street wake of a circular cylinder



Figure 18. Decay of (a) maximum velocity defect D;
.!9

and (b) maximum turbulence intensity u@
.!9

. £,
AR"2)0; K, AR"3)0. - - -, x~2@3. Solid lines for visual aid only.

Figure 19. Half-width as function of longitudinal distance: n , AR"2)0; K, AR"3)0. - - -, x1@3. Solid lines for
visual aid only.
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(Williamson 1992; Kiya & Ishikawa 1997;) and a plate normal to the #ow (Najjar
& Balachandar 1998), and in a plane mixing layer (Ishikawa et al. 1997). Statistical
properties of the amplitude modulation can be studied by the wavelet transform of the
velocity #uctuation u. The Morlet wavelet was used to obtain the real part =

R
and the



Figure 20. Peak value of averaged power spectrum at F
M

and F
m

as function of longitudinal distance for
AR"3)0. K, E

M
(major plane); e, E

m
(minor plane). Solid lines for visual aid only.
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imaginary part =
I
of the wavelet coe$cient=(a, b) de"ned by

=(a, b)"
1

Ja
: t* A

t!b

a B u(t) dt, (2)

where t (¹)"exp(ikt¹)exp(!¹2/2) is the Morlet wavelet, and the asterisk denotes the
complex conjugate; a is the scale parameter and b is the translation. The parameter kt was
chosen as 6)0 as recommended by Farge (1992).

Amplitude of the real part follows the amplitude of the velocity #uctuation if the scale a is
"xed at the inverse of the vortex-shedding frequency, that is, a high amplitude of u corres-
ponds to a high amplitude of=

R
, and vice versa. On the other hand, a high amplitude of the

imaginary part=
I
corresponds to a high amplitude of Lu/Lt because the imaginary part of

t(t) is antisymmetric. Thus, the time history of modulus D=D ("(=2
R
#=2

I
)1@2) is the

envelope of the time history of the real part and the imaginary part. This implies that
the #uctuating part of the modulus includes information on the amplitude modulation of
the velocity #uctuation. This amplitude modulation will be referred to as the low-frequency
unsteadiness of the shed vortices.

The low-frequency unsteadiness was studied for both disks AR"2)0 and 3)0. In what
follows, the results for AR"3)0 will be presented because features of the unsteadiness were
basically the same in both cases.

Figure 21(a) shows contours of those=
R

and D=D in the (a,b) parameter space, which were
constructed from u near the edge of the wake in the minor plane. High peaks of=

R
appears

at the scale a/Dt"1/(F
m
Dt)"24)0, which is the period of the vortex shedding. Here,

Dt"0)5 ms is the time interval of digitization of u. At the same scale, D=D attains peaks with
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an interval much longer than that for=
R
. This is interpreted as low-frequency unsteadiness.

Similar results are obtained for the velocity #uctuations in the major plane as shown in
Figure 21(b). In this case, the high peaks of=

R
appear at the scale a/Dt"1/(F

M
Dt)"41)0.

Figure 22 shows the simultaneous #uctuating components of modulus in the major and
minor planes, D=D@

M
and D=D@

m
, respectively. The velocity #uctuations were measured at the

same positions as in Figure 21. The representative frequency of the low-frequency unsteadi-
ness can be obtained in terms of the power spectrum of the #uctuating component, which is
shown in Figure 23. The spectrum in the minor plane has a broad peak at a frequency in
a range 15}20 Hz, while that in the major plane has a broad peak at a frequency in another
Figure 23. Power spectrum of D=D' in minor plane (a/Dt"24)0) and major plane (a/Dt"41)0) for AR"3)0. The
vertical axis is arbitrary linear. Top, minor plane; bottom, major plane.

Figure 22. Time history of #uctuating part of modulus in major plane at scale a/Dt"24)0, D=D@
M

, and that in
minor plane at a/Dt"41)0, D=D@

m
, for AR"3)0. Vertical scale is arbitrary linear. Positions of measurement are the

same as those in Figure 21. **, D=D@
M
; - - -, D=D@

m
.
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range 7}10 Hz. These representative frequencies are of the order of 1/5 of the corresponding
vortex-shedding frequencies F

m
and F

M
. In other words, every "ve shed vortices experience

modulation in their strength. This was also the case for the elliptic disk of AR"2)0. In
passing, it is worth mentioning that the representative frequency for the vortex-street wake
of a circular cylinder is of the order of 1/25 of the vortex-shedding frequency at Reynolds
numbers of 80}104 (Kiya & Ishikawa 1997).

Another aspect of the low-frequency unsteadiness can be obtained in terms of the
cross-correlation of D=D@ constructed from simultaneous velocity #uctuations at two oppo-
site positions in each plane, a sample record of the D=D@ being given in Figure 24. Figure 25
shows the cross-correlation of D=D@̀ and D=D@

~
in the minor plane, C

m
(q), where q is the time

lag; D=D@̀ is D=D@ on the side z'0 while D=D@
~

is that on the opposite side, z(0. The velocity
#uctuations used to construct D=D'

`
and D=D@

~
are those at positions of maximum u@. The

cross-correlation takes a signi"cant positive value of approximately 0)35 at q"0. This is
also the case for the cross-correlation C

M
(q) in the major plane. The above results indicate

that the low-frequency unsteadiness in the minor plane, for example, occurs in phase on
both sides. The same is true in the major plane. If the high amplitudes of the velocity
#uctuation are assumed to correspond to stronger shed vortices and thus a greater
instantaneous width of the wake, the greater width should appear simultaneously on both
sides in each plane. The reverse is true for the low amplitudes of the velocity #uctuation.

The phase relation of the low-frequency unsteadiness in the major and minor planes can
be obtained in terms of the cross-correlation coe$cient of the #uctuating components of
modulus D=D@

M
and D=D@

m
[say, C

Mm
(q)] based on the simultaneous velocity #uctuations. The

#uctuating components have been presented in Figure 22. As shown in Figure 26, C
Mm

(q)
attains a signi"cant negative value of !0)4 for AR"2)0 and !0)25 for AR"3)0 at q"0,
indicating that the unsteadiness in the two planes is out of phase. That is, when the wake is
in the phase of enlargement in the major plane, the wake in the minor plane is in the phase
of shrinkage, and vice versa. The same results were obtained in a range x/D"2)0}8)0, so
that the low-frequency modulation is of large spatial extent.

4. DISCUSSION

We conjecture that the mechanism responsible for the two periodic components is the
global instability in the steady, recirculating near wake as in the case of the periodic vortex
Figure 24. Time history of #uctuating component of modulus at positions of maximum u@ in minor plane for
AR"3)0: D=D@̀ on side z'0 and D=D@

~
on side z(0 (a/Dt"24)0).**, D=D@̀ ; - - -, D=D@

~
. Vertical axis is arbitrary

linear.



Figure 25. Cross-correlation coe$cient of modulus D=D@̀ and D=D@
~

in major plane (a/Dt"24)0) and in major
plane (a/Dt"41)0) for AR"3)0. **, C

M
(major plane); - - -, C

m
(minor plane).

Figure 26. Cross-correlation coe$cient of D=D@
M

and D=D@
m

at positions of maximum u@, C
Mm

(t), at x/D"4)0.**,
AR"2)0; - - -, AR"3)0.
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shedding in the near wake of two-dimensional blu! bodies (Huerre and Monkewitz 1990;
Asai et al. 1996). If the Reynolds number is su$ciently low, a steady recirculating region is
realized in the near wake of the disk. The velocity pro"le in the recirculating region has two
representative length scales; one is the width of the wake in the minor plane, and the other is
that in the major plane. The velocity pro"le in the minor plane is expected to have the
fundamental mode of maximum growth rate at a critical Reynolds number. This eventually
evolves into the alternate shedding of the hair-pin vortices (Figure 4). The same should also
be true in the major plane although the #ow visualization has not demonstrated vortical
structures associated with this mode.

The point is that the fundamental modes in the minor and major planes have di!erent
frequencies and growth rates. This is the reason why two periodic velocity components
appear in the elliptic wake. The growth rate is likely to be greater in the minor plane than in
the major plane. This is because the level of the velocity #uctuation u@ in the region x/D(6
is higher in the minor plane than in the major plane (Figure 16) and also because the region
of the component F

M
is eroded by that of the component F

m
with increasing longitudinal

distance in the same region (Figure 8).
If the above interpretation is correct, two periodic components are expected to appear

also in the wake of a rectangular plate. This is the case as shown in Figures 7 and 9. The
Strouhal number for the elliptic disks is only slightly di!erent from that for the rectangular
plates at the same value of AR. This suggests that the velocity distribution in the steady
recirculating region and thus the vortical structure caused by the instability are similar in
the two wakes.

The vortical structure responsible for the periodic component in the major plane has not
been observed in the #ow visualization. To study this structure, a direct numerical simula-
tion of the wake of a rectangular plate was made by NAGARE3D.DH software produced
by the Institute of Computational Fluid Dynamics Co. Ltd, Tokyo. This software employs
the third-order upwind-di!erence scheme of Kawamura & Kuwahara (1984) for the
nonlinear inertial terms. The rectangular plate has the thickness of D/3, D being the length
of the shorter side, and the aspect ratio AR"2)0. Reynolds number based on D is 200. The
#ow was impulsively started from rest with the velocity;

=
. The plate was forced to oscillate

in the y- and z-directions with the frequency F
M

and F
m

(Figure 7), respectively, and the
same amplitude of 0)05D to enhance the vortex shedding. The forcing was stopped
at ;

=
t/D"69)1, and then the computation was continued up to ;

=
t/D"203)8. This

time interval of 134)7 corresponds approximately to 16 periods of shedding of the
hairpin-like vortices in the minor plane, or 11 periods of shedding of a structure responsible
for F

m
. Thus, the e!ects of the forcing on the #ow is expected to have disappeared at

time ;
=

t/D"203)8.
Figure 27 shows isosurfaces of magnitude of vorticity vector in the wake at the time
;

=
t/D"180)0. Hairpin-like vortices are alternately shed on both sides of the wake in

the minor plane, while in the major plane these hairpin-like vortices appear to experience
a meandering motion. Thus, the structure responsible for the component F

M
is this

meandering motion. The meandering motion might be associated with large-scale vortices
in the major plane although they are not clear in the simulation; these vortices might
become clearer at higher Reynolds numbers. The hairpin-like vortices emerge from the end
of the recirculating region, not being a result of deformation of rectangular vortex rings
which one might imagine are shed from the edge of the plate. Moreover, the power spectrum
of velocity #uctuation u in the wake, which was obtained in terms of u during the time
interval 167)0}203)8, was found to have a peak at the frequency almost equal to F

M
and F

m
in

the major and minor planes (not shown). These facts strongly suggest that the frequencies
F
M

and F
m

are associated with the fundamental frequency of global instability in the near
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wake. A theoretical or numerical analysis of the global instability of the wake is a challeng-
ing problem to be tackled in the future.

A comparison between Figures 4 and 27 reveals that the hairpin-like vortices emerge
more downstream in the simulation than in the #ow visualization. This is probably because
the grid size for the simulation was not "ne enough to capture details of the separated
shear layer near the plate. Essential physics of the global instability in the #ow, however,
is likely to be captured by this simulation. More detailed simulations are needed in the
future.

Figure 27 seems to suggest that the axis-switching is a result of di!erent growth rates of
the fundamental mode of the global instability in the major and minor planes. The
fundamental mode in the minor plane, which generates the hairpin-like vortices, has
a greater growth rate than that in the major plane, thus quickly increasing the width of the
near wake in the minor plane. This is likely to be supported by the fact that the heads of
the hairpin-like vortices travel up to z/D"!2)4 or 2)2 in the region x/D"8}10
[Figure 27(b)], while the meandering motion in the major plane moves the hairpin-like
vortices towards the y-direction only to z/D"!1)1 or 1)5 in the same region [Figure 27(a)].
This causes the axis-switching.

The average distance between shed vortices is approximately 6)0D in the minor plane, so
that the representative wavelength of the low-frequency unsteadiness is of the order of 30)0D
because "ve consecutive vortices, on average, are included in one period of the unsteadiness.
Thus, the low-frequency unsteadiness is of large spatial extent.

Low-frequency unsteadiness of the same nature has been observed in separated-and-
reattaching #ows (Eaton & Johnston 1982; Kiya 1989) and in the vortex-street wake of
cylindrical bodies (Williamson 1992; Ishikawa et al. 1997). The unsteadiness in the separ-
ation bubbles is explained by a feedback loop. On the other hand, the unsteadiness in the
vortex-street wake is interpreted as the large-scale vortex dislocations (Williamson 1992) or
as the beat of two slightly di!erent frequencies of the vortex shedding at nearby spanwise
positions. In the elliptic wake, it is di$cult to assume vortex dislocations or a feedback loop.
Moreover, since F

m
"85 Hz and F

M
"50 Hz for AR"3)0, the beat frequency should be

35 Hz, which is more than twice the representative frequency of the unsteadiness in the
minor plane and "ve times that in the major plane. Thus, the beat frequency is not
consistent with the observed frequency of the unsteadiness. The mechanism of the low-
frequency unsteadiness in the elliptic wake remains to be clari"ed.

5. CONCLUDING REMARKS

The present paper has described properties of turbulent wake of the elliptic disks of aspect
ratio of 2)0 and 3)0. The main results may be summarized as follows.

(a) There are two periodic components of velocity #uctuations in the elliptic wake. One is
in the minor plane, while the other is in the major plane. The component in the minor plane
is associated with the alternate shedding of hairpin-like vortices. A structure responsible for
the component in the major plane has not been visualized but is likely to be a meandering
motion of the wake in the same plane. The meandering motion is con"rmed by a numerical
simulation at a Reynolds number of 200. Both components were discussed, and it was
suggested that they are associated with the global instability of the steady recirculating
region behind the elliptic disk.

(b) The frequencies of the periodic velocity #uctuations, normalized in the form of
Strouhal numbers, are functions of the aspect ratio. No universal Strouhal number is
constructed by merely adjusting the length scale.
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(c) The axis switching, which is manifested as the cross-over of the half-width in the
major plane and that in minor plane, occurs approximately 4 minor diameters behind
the disk. The mechanism of the axis switching is di!erent from that in elliptic jets. In the
elliptic wake, the axis switching is discussed to be due to the di!erence in the growth rates of
the fundamental modes in the major and minor planes. This is likely to be con"rmed by the
numerical simulation. A theoretical or numerical analysis of the global instability is
a challenging problem to be tackled in the future.

(d) The maximum velocity defect, the maximum longitudinal turbulence intensity and
the equivalent half-width of the elliptic wake obey the law for the far wake of axisymmetric
bodies, farther downstream than approximately 15 minor diameters behind the disk.
However, a much longer distance appears to be needed before the wake acquires the same
statistical properties as an axisymmetric wake.

(e) The wake experiences a low-frequency unsteadiness. This was suggested from the
wavelet analysis of the longitudinal velocity #uctuations in the minor and major planes,
using the #uctuating component of modulus of the Morlet wavelet transform. The represen-
tative frequency of the unsteadiness is di!erent in the two planes, being approximately
one-"fth of the frequency of the vortex shedding in the minor plane and that of the
meandering motion in the major plane. The unsteadiness is in phase on both sides of
the wake in the same plane but out of phase in the di!erent planes. The unsteadiness is of
large spatial extent, being, for example, 30 minor diameters in the minor plane for AR"3)0.
This could be compared with the distance between two consecutive vortices in the minor
plane, which is approximately 6 minor diameters. The mechanism responsible for the
unsteadiness remains to be clari"ed.
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Figure 4. Flow visualization by #uorescent dye at Re"200 in (a) major plane and (b) minor plane for
AR"3)0. Flow from left to right. Time advances from top to bottom with interval of 3)0D/;

=
, which is

approximately one-third of vortex-shedding period. Flow patterns in (a) and (b) are not simultaneous.



Figure 27. Vorticity contours in simulated wake of rectangular plate of thickness D/3 and aspect ratio AR"2)0
at Re"200 in (a) major plane and (b) minor plane. Top and bottom "gures in (a) and (b) are di!erent

visualizations of vorticity of the same #ow.
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